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Masks have remained an important mitigation strategy in the fight against COVID-19 due to their ability to
prevent the transmission of respiratory droplets between individuals. In this work, we provide a comprehensive
quantitative analysis of the impact of mask-wearing. To this end, we propose a novel agent-based model of viral
spread on networks where agents may either wear no mask or wear one of several types of masks with different
properties (e.g., cloth or surgical). We derive analytical expressions for three key epidemiological quantities: The
probability of emergence, the epidemic threshold, and the expected epidemic size. In particular, we show how
the aforementioned quantities depend on the structure of the contact network, viral transmission dynamics, and
the distribution of the different types of masks within the population. Through extensive simulations, we then
investigate the impact of different allocations of masks within the population and tradeoffs between the outward
efficiency and inward efficiency of the masks. Interestingly, we find that masks with high outward efficiency and
low inward efficiency are most useful for controlling the spread in the early stages of an epidemic, while masks
with high inward efficiency but low outward efficiency are most useful in reducing the size of an already large
spread. Last, we study whether degree-based mask allocation is more effective in reducing the probability of
epidemic as well as epidemic size compared to random allocation. The result echoes the previous findings that
mitigation strategies should differ based on the stage of the spreading process, focusing on source control before
the epidemic emerges and on self-protection after the emergence.
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I. INTRODUCTION28

The COVID-19 pandemic has spread across the globe for29

over two years, impacting economies and, as of January 2023,30

had claimed over 6.7 million lives [1]. SARS-CoV-2 is the31

virus that causes COVID-19. Human-to-human transmission32

of SARS-CoV-2 is mainly through coughing, sneezing, and33

even talking or singing, which spread respiratory droplets or34

aerosols, with sizes varying from visible to microscopic [2–6].35

When the virus-containing droplets or aerosol particles are36

exhaled from the infected source, they move forward to a37

certain distance based on their sizes [7,8]. A healthy person38

can be exposed if he inhales droplets or aerosol particles39

exhaled by an infected person nearby [7]. Scientific research40

suggests that controlling the COVID-19 pandemic entails both41

top-down systemic interventions and bottom-up collective42

changes in public behavior [9–11]. WHO continues to recom-43

mend droplet and contact precautions as nonpharmacological44

intervention advice for the public, such as mask wearing and45

reducing social gatherings, etc. [12,13].46

Compelling data and experimental studies on humans and47

manikins demonstrate that masking is an effective tool in48

mitigating SARS-CoV-2 airborne and droplets transmission49

[14–30]. The clinical efficacy of a face mask is determined50

by the filtration efficacy of the material, fit of the mask,51

and compliance to wearing the mask [8,14,27]. Two factors52

are usually considered and tested when assessing the overall 53

clinical efficacy of masks: Inward and outward protection 54

efficiency [2,8,23,24,26]. The capability of masks that reduces 55

the outward emissions of micron-scale droplets and aerosol 56

particles exhaled by infected persons is known as outward 57

protection, also termed source control [14,24,26,27,31]. Ref- 58

erence [21] finds that double-masking increases the source 59

control capability of a surgical mask. Reference [27] shows 60

that surgical and cloth masks provide less outward protection 61

potentially due to the weaker seal around these masks com- 62

pared to N95 respirators. The pressurized droplets or aerosol 63

particles are likely to escape directly from the gap between the 64

mask and the human face due to poor fit. Inward protection, 65

also known as wearer protection, is the capability of masks 66

to act as a barrier to protect the uninfected wearers from 67

respiratory droplets and aerosol particles, to penetrate through 68

and land on exposed mucous membranes of the eye, nose, and 69

mouth [14,17,18,24,32]. References [33,34] find that cloth 70

masks have limited inward protection in healthcare settings 71

where viral exposure is high compared to surgical masks and 72

N95 respirators. 73

While it is well-studied that masks qualitatively miti- 74

gate viral spread by limiting the transmission of respiratory 75

droplets [35–39], many important questions about the quanti- 76

tative impact of masks remain open [28,40,41]. For instance, 77

how many individuals need to wear a mask to prevent future 78
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outbreaks [28]? When there are not enough high-quality79

masks (e.g., N95 masks) for all individuals [42], how should80

other types of mass-produced masks (e.g., surgical or cloth81

masks) be allocated within the population [43]? What types82

of mask attributes are most desirable in preventing future out-83

breaks or controlling ongoing pandemics (e.g., source control84

or self-protection) [44–46]?85

This work aims to answer the above questions from a prin-86

cipled, mathematical lens. We propose a novel agent-based87

model of viral spread on networks wherein individuals wear88

different types of masks. In particular, we study models in-89

corporating multiple types of masks; prior work considers90

scenarios where individuals either wear a mask or do not wear91

a mask [28,43,47–57]. Our contributions are twofold. First,92

we derive analytical predictions for three important epidemio-93

logical quantities: The probability of emergence, the epidemic94

threshold (also known as the basic reproduction number R0),95

and the expected epidemic size. Specifically, we show how96

these quantities depend on the structure of the contact net-97

work, the properties of the viral spread, and the distribution98

of masks within the population. Our results are established99

by leveraging the theory of multitype branching processes100

[58,59]. Moreover, we show through extensive simulations101

that the analytical predictions we derive are in good agreement102

with empirical results.103

We then explore a variety of mask-wearing scenarios rele-104

vant to the ongoing pandemic, focusing in particular on how105

the probability of emergence (PE) and expected epidemic size106

(ES) are affected. First, we quantify the tradeoffs between107

using superior versus inferior masks (e.g., surgical versus108

cloth) when all individuals wear one of either type of mask;109

naturally, we find that both the PE and ES are reduced when110

the fraction of superior masks increases in the population.111

We then consider scenarios in which individuals either wear112

superior masks, inferior masks, or no masks. We find that in-113

creasing the fraction of superior masks significantly decreases114

the fraction of infected non-mask-wearers when the fraction115

of non-mask-wearers is small (<10%). Interestingly, when116

the fraction of non-mask-wearers is larger (>20%), increasing117

the fraction of superior masks does not significantly mitigate118

the infections in the non-mask-wearing population. This sug-119

gests that mask-wearing strategies are more effective when120

a larger fraction of the population wears inferior masks,121

as opposed to a smaller fraction of the population wearing122

superior masks. Next, we study tradeoffs between masks123

that are “inward-good” (i.e., good at blocking respiratory124

droplets from the outside but poor at limiting transmission125

from the mask-wearer to the outside), and those that are126

“outward-good” (i.e., good at limiting transmission from the127

mask-wearer to the outside but poor at blocking respiratory128

droplets from the outside) [14,24,46,60]. We find that both129

mask types are useful but at different stages of viral propa-130

gation. In particular, outward-good masks are most helpful in131

preventing the emergence of an epidemic, while inward-good132

masks are best for reducing the infections of an already ongo-133

ing epidemic. Last, we look into mask assignment depending134

on node degree, by assigning outward-good masks to top135

x% high (low) degree nodes and inward-good masks to the136

rest of the nodes. We find a scenario in which high-degree137

nodes wear inward-good masks and low-degree nodes wear138

outward-good masks is efficient in reducing the probability of 139

emergence and the opposite allocation scheme is more helpful 140

in controlling the epidemic size extension after the epidemic 141

forms. This result reconfirms that we need to treat the two 142

stages of virus spread (i.e., before and after the epidemic ex- 143

ists) with different mitigation strategies. It also indicates that 144

high-degree nodes and low-degree nodes play different roles 145

in the epidemic process. The most powerful factor leading 146

to a pandemic as well as extending the pandemic is high 147

degree nodes. However, before the epidemic starts, remov- 148

ing the additional infecting paths from low-degree initiator 149

to susceptible high-degree nodes is critical in preventing the 150

epidemic from happening. After the epidemic forms, protect- 151

ing susceptible low-degree nodes from infected high-degree 152

nodes is more important in suppressing the propagation of the 153

epidemic. 154

While our results are motivated by mask-wearing in a 155

pandemic, our model can be applied more broadly to other 156

mitigation strategies. For example, our results on inward and 157

outward efficiencies suggest that when we think of a mitiga- 158

tion strategy for a pandemic, we should consider the current 159

stage of the spread: Early on, it is most important to limit 160

people spreading it to others (this can be achieved through 161

social distancing, for instance), while later it becomes more 162

important to protect individuals from getting the virus. This 163

insight can help with strategies for prioritizing vaccines, lim- 164

iting gatherings, etc. On a more technical note, our model 165

generally captures heterogeneities in the capability of a node 166

to be affected by or to spread a virus. While one interpretation 167

of node-level heterogeneity is the type of mask used, it can 168

also capture the effects of vaccinations or community-based 169

interactions (i.e., if individuals tend to interact within their 170

own community rather than within others, then this may result 171

in higher transmissibility between two individuals of the same 172

community). 173

The structure of this paper is as follows. In Sec. II, we 174

provide an overview of related epidemic models and introduce 175

a formal description of a model for viral spread in the presence 176

of masks of various types. Section III contains our theoretical 177

analysis, where we derive expressions for the probability of 178

emergence, the epidemic threshold, and the expected size of 179

the epidemic. Our theoretical results are verified in Sec. IV, 180

where we explore the implications of the multitype mask 181

model through simulations. Finally, we conclude and discuss 182

future avenues of research in Sec. V. Appendix Secs. A 1 183

and A 2 present preliminaries and more technical details for 184

analytical results. Appendix Sec. A 3 provides additional ex- 185

periments validating analytical results. Appendix Sec. A 4 186

presents a sensitivity analysis to explore the impact of the 187

network structure with four different experiment settings, in- 188

cluding replacing the current network model with random 189

networks with clustering [61], as well as a real-world dataset. 190

II. EPIDEMIC MODELS 191

The literature on epidemic modeling generally falls into 192

one of two categories: Ordinary differential equation (ODE) 193

models, and agent-based stochastic models. In typical ODE 194

models, the evolution of the fraction of various types (e.g., 195

susceptible individuals, infected individuals) is studied. The 196
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governing equations for the epidemic dynamics are derived197

from laws of mass action that are based on the way individuals198

interact and spread the virus (see, e.g., Ref. [62]). A number199

of recent works have used the ODE approach to model viral200

spread with masks. Tracht et al. [50] first proposed an ODE201

model incorporating mask-wearing. Motivated by challenges202

caused by the COVID-19 pandemic, many authors have sub-203

sequently elaborated on the model of Ref. [50], addressing204

for instance the effect of asymptomatic infections and mask205

allocation [28,43,47–49]. However, a common criticism of the206

ODE approach is that in modeling population-level phenom-207

ena, it fails to consider the possibly complex ways in which208

individuals interact with each other.209

Agent-based stochastic models address this gap by study-210

ing how individual-level interactions facilitate viral spread.211

Such models reveal the rich interplay between interaction212

patterns and viral spread. Various agent-based models incor-213

porating mask-wearing have been recently proposed [51–57].214

The drawback of stochastic models is that they are often215

challenging to simulate for realistic parameters. To overcome216

this issue, a significant line of work on agent-based models217

focuses on deriving analytical predictions for key epidemio-218

logical quantities that accurately describe viral spread in large219

contact networks; the works [53–56] adopt this approach to220

quantify the effect of mask-wearing. This is also the focus of221

the present paper. We emphasize that the literature discussed222

above studies the effect of a single type of mask in the popu-223

lation. A key novelty of our work is that we study the effect224

of multiple types of masks which helps reveal the tradeoffs225

between the inward and outward efficiencies of the masks226

involved and, more broadly, sheds light on the effectiveness227

of various mitigation strategies.228

In the remainder of this section, we describe stochastic229

models of viral spread in more detail. In Sec. II A, we review230

the basic stochastic model. We then discuss a new stochastic231

model with multitype masks in Sec. II B. In Sec. II C, we232

provide an overview of the network model we adopt for our233

underlying contact network.234

A. An agent-based stochastic model on networks235

In his seminal work [63], Newman considered an SIR236

model of viral spread over a contact network. Initially, there237

is a single infected individual in the population. When a238

susceptible individual and an infected individual interact,239

the infected individual transmits the virus to the susceptible240

individual with probability T , where T is called the transmis-241

sibility of the virus. After a fixed or random amount of time,242

infected individuals recover and can no longer transmit the243

virus. Through branching process techniques, Newman de-244

rived expressions for two key epidemiological quantities: The245

probability that an epidemic emerges (PE) and the expected246

size of the epidemic (ES). Importantly, his results revealed the247

crucial role that the structure of the contact network plays in248

the behavior of the PE and ES. Although the viral dynamics249

may appear simple, Newman’s model can capture complex250

viral transmission and recovery mechanisms through the ap-251

propriate choice of T [[63], Eqs. (2)–(6)]. Several authors252

have generalized Newman’s model to account for various253

agent-level heterogeneities [53–56,64–67].254

B. Viral spread with multitype masks 255

In this work, we consider a generalization of Newman’s 256

basic framework called the multitype mask model. Motivated 257

by mask-wearing behaviors in response to the COVID-19 pan- 258

demic, we assume that there are M types of individuals, each 259

wearing a different type of mask. For notational convenience, 260

we shall say that an individual is of type i if they wear a 261

type-i mask (here, 1 � i � M). We assume that the proba- 262

bility of transmission between individuals varies depending 263

on the type of mask each individual wears. Specifically, the 264

probability that a virus is eventually transmitted from a type-i 265

infective to a type- j susceptible is Ti j , where T is an M × M 266

transmissibility matrix. 267

Typically, masks are characterized in terms of their inward 268

and outward efficiencies (see, e.g., Refs. [2,8,23,24,26,60]). 269

The inward efficiency is the probability that respiratory 270

droplets will be blocked from the outside layer of the mask 271

to the inside; thus, inward efficiency quantifies the protec- 272

tion of the mask against receiving the virus. The outward 273

efficiency is the probability that respiratory droplets will kept 274

from the inside layer of the mask to the outside, quantifying 275

the protection against transmitting the virus. The transmission 276

probability from a type-i individual to a type- j individual is 277

then given by 278

Ti j := (1 − εout,i )(1 − εin, j )T, (1)

where εout,i is the outward efficiency of a type-i mask, εin, j is 279

the inward efficiency of a type- j mask, and T is the baseline 280

transmissibility of the virus, i.e., the probability of trans- 281

mission in the presence of no masks. We have εout,i, εin, j ∈ 282

[0, 1],∀i, j ∈ [1, M]. The higher the inward or outward effi- 283

ciency is, the smaller Ti, j is, and the better quality the mask is. 284

In Eq. (1), (1 − εout) [(1 − εin), correspondingly] represents 285

the probability that the droplets will pass the mask from the 286

inside (outside) layer of the mask to the outside (inside). Also 287

Note that T is not symmetric if the vectors (1 − εout) and 288

(1 − εin) are not collinear. We would like to remark that the 289

multitype mask model can generally capture the effects of mit- 290

igation strategies that introduce node heterogeneity of taking 291

in and spreading out the spreading item. For example, in a case 292

where a fraction of the population is vaccinated against the 293

virus, we can consider a new type of mask (or, equivalently, 294

a new type of nodes) with appropriate inward and outward 295

efficiency parameters associated with that type. If in a given 296

context vaccinated individuals gain full immunity against the 297

virus, then we can capture that by setting εout,v = εin,v = 1 for 298

nodes of type-v that represents vaccinated individuals. This 299

setting will ensure that a vaccinated individual can never be 300

infected. 301

In line with prior literature on stochastic epidemic models, 302

we generate the contact network G by the configuration model 303

[68]. Namely, we specify a distribution {pk}k�0 with support 304

on the nonnegative integers, where pk is the probability that 305

an arbitrary vertex has degree k, i.e., it is connected to k other 306

nodes via an undirected edge. According to the configuration 307

model, the degrees of vertices in G are drawn independently 308

from {pk}k�0. Equivalently, G is selected uniformly at random 309

from among all graphs satisfying the degree distribution pk . 310

Next, we assume that the M types of masks are randomly 311
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TABLE I. Description of parameters in the multitype mask model.

Quantity Description

M Number of mask types
mi, 1 � i � M The probability that a given individual is type i
T Baseline virus transmissibility
Ti j , 1 � i, j � M The probability that an infected type-i individual infects a type- j neighbor (T is the transmissibility matrix)
εout,i, εin,i Outward and inward efficiencies of type-i mask
G Graph representing the contact network
{pk}k�0 Degree distribution for G generated via the configuration model

distributed amongst vertices in the G. Let {m1, . . . , mM} be312

a distribution over the set {1, . . . , M} where mi represents313

the fraction of individuals who wear a mask of type i. We314

further assume that the type of mask is chosen independently315

[69] from {mi}M
i=1 over all vertices in G. See Table I for a316

succinct description of our model parameters, and Fig. 1 for an317

illustration of the spreading process. For each i = 1, . . . , M,318

our goal is to compute the following quantities of interest: The319

PE assuming that the initially infected node is of type i, and320

the ES of the infected type-i individuals.321

The above modification of Newman’s model for the mask-322

wearing setting has garnered recent interest in the literature.323

In previous work, we studied the special case where M = 2:324

individuals either wear a mask or do not [53]. We also derived325

expressions for PE and ES in this setting. Lee and Zhu [56]326

simultaneously studied the same model, and obtained re-327

sults for the ES in the setting M = 2. The results of both 328

Refs. [53,56] follow as a special case of our more general 329

model. We also mention the work of Allard et al. [67], which 330

is especially relevant. They study a bond percolation problem 331

over multitype networks, which can be viewed as a more 332

generic version of the mask model we study here. A key dif- 333

ference between our work and theirs is that the distribution of 334

mask types and the network formation are independent in our 335

model, whereas Allard et al. consider a framework where the 336

probability of connectivity among nodes also depends on the 337

node types, resulting a joint generation of node types and net- 338

work structure. This renders their results harder to interpret, 339

albeit more general. Our formulation yields simpler formulas 340

that clearly illustrate how the structural aspects of the network, 341

mask properties, and viral transmission dynamics interact to 342

derive the PE and ES. In addition, our work also validates 343

(a) (b)

(c) (d)

FIG. 1. A simple demonstration of the spreading process with a population of 6. Nodes wearing pink masks is type-1, and yellow masks is
type-2. Red color means infected, while green means healthy. (a) Before the transmission starts, the status of mask-wearing for the population
is decided. The transmissibilities of the seed to two of his contacts are set according to their mask-wearing status. There is one initially infected
seed (layer 0). (b) The seed successfully infected his neighbors (layer 1) with different transmissibilities. (c) Layer 1 nodes only infected the
node that doesn’t wear masks (upper right node). (d) The upper right node continues the infection to the last layer but didn’t succeed.
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the theoretical analysis through extensive simulations and344

provides insights into the tradeoffs between inward-good and345

outward-good masks. Finally, our framework still has the flex-346

ibility to correlate the mask types with the network structure347

by modifying the mask allocation strategy based on node348

degrees. In the Results section, we demonstrate this and show349

that allocating different types of masks based on node degree350

can help further reduce the probability and size of epidemics.351

C. Network model352

To model the underlying contact network, we utilize ran-353

dom graphs with random degree distribution generated by354

the configuration model [68,70]. The configuration model355

generates random graphs with specified degree sequences356

sampled from a degree distribution. Let G denote the under-357

lying contact network defined on the node set N = {1, ..., n}.358

The structure of G is defined through its degree distribution359

{pk, k = 0, 1, ...}, where pk is the probability that an arbi-360

trary node in network G has degree k. We generate a degree361

sequence from a well-behaved degree distribution, i.e., distri-362

bution with moments of arbitrary order being finite [63,64,71].363

Our analytical solutions are valid for such well-behaved distri-364

butions, e.g., Poisson degree distributions, power-law degree365

distributions with exponential cutoff, etc. However, it is worth366

noting that if the second moment of the degree distribution is367

finite when n approaches infinite, the expected clustering coef-368

ficient of a typical vertex approaches zero. This indicates that369

the graph is locally treelike. In the context of the configuration370

model, the degree distribution of a randomly chosen neighbor371

of a randomly chosen vertex is denoted by { p̂kk = 1, 2, ...},372

and is given by p̂k = kpk/〈k〉 for k = 1, 2, ..., where 〈k〉 de-373

notes the mean degree (i.e., 〈k〉 = ∑
k kpk).374

III. ANALYTICAL RESULTS375

In this section, we present the derivation of the probabil-376

ity of emergence (PE), the epidemic threshold (R0), and the377

expected epidemic size (ES) in the multitype mask model378

for an arbitrary integer M > 1. Formally, emergence is de-379

fined to be the event where the virus infects an infinite or380

unbounded number of vertices in the network. It is the com-381

plement of the extinction event, in which the virus dies out382

after infecting a finite number of individuals. In Sec. III A,383

we compute the through an approach based on probability384

generating functions (PGFs). References [53,63,65,66] use385

this method to derive the PE for related epidemic models,386

among which Ref. [53] provides a similar analysis for the387

M = 2 case partially relying on the conclusion from Ref. [65].388

In our work, we present a direct derivation for any M > 1389

case. Preliminaries for PGFs and configuration models can be390

found in Appendix Sec. A 1.391

In Sec. III B, we study the epidemic threshold R0, also392

known as the basic reproduction number. When R0 � 1, the393

epidemic dies out almost surely and when R0 > 1, there is394

a positive probability that the epidemic emerges. Generally,395

R0 is interpreted as the mean number of secondary infections396

caused by a given infective (see, e.g., Ref. [63]), but our results397

show that the true picture is more subtle than that. Indeed, us-398

ing classical results from multitype branching process theory399

[58,59], we show that R0 is the spectral radius of a matrix that 400

depends on {m}M
i=1, {Ti j}1�i, j�M as well as the first and second 401

moments of the degree distribution. 402

Finally, in Sec. III C, we study the ES. Specifically, we 403

show how to compute the expected fraction of type-i individ- 404

uals, conditioned on the emergence of the epidemic. To do 405

so, we leverage the method of Gleeson and coauthors [72,73], 406

which were recently used to compute the ES in models of viral 407

spread [53,65]. 408

A. Probability of emergence 409

Suppose that a type-i infective—named v for 410

convenience—has k j susceptible neighbors of type j, for 411

1 � j � M. Let Xj be the number of neighbors of type j who 412

are eventually infected by v, so that Xj ∼ Binomial(k j, Ti j ). 413

Moreover, X1, . . . , XM are independent. Conditioned on the 414

neighborhood profile k1, . . . , kM , the PGF of the number of 415

infections of each type caused directly by v is 416

E
[
sX1

1 . . . sXM
M

∣∣k1, . . . , kM
] =

M∏
j=1

(1 − Ti j + Ti j s j )
k j .

Our next step is to condition on the total number of neighbors 417

of v rather than the number of neighbors of each type. Note 418

that if we are given k := k1 + . . . + kM , the tuple (k1, . . . , kM ) 419

is drawn from the Multinomial distribution. Namely, the 420

probability of observing a given instantiation (k1, . . . , kM ) is 421

equal to 422(
k

k1, . . . , kM

)
mk1

1 . . . mkM
M .

The PGF of the number of neighbors of all types directly 423

caused by v conditioned on k can therefore be written as 424

E
[
sX1

1 . . . sXM
M

∣∣k]
=

∑
k1+...+kM=k

(
k

k1, . . . , kM

) M∏
j=1

[mj (1 − Ti j + Ti j s j )]
k j

=
⎡
⎣ M∑

j=1

mj (1 − Ti j + Ti j s j )

⎤
⎦k

. (2)

Finally, to remove the conditioning on the number of neigh- 425

bors, k, we take an expectation over the degree distribution 426

of v. If v is type i, then the PGF of the number of secondary 427

infections of each type is given by 428

γi(s1, . . . , sM ) : =
∞∑

k=0

pk

⎡
⎣ M∑

j=1

mj (1 − Ti j + Ti j s j )

⎤
⎦k

= g

⎡
⎣ M∑

j=1

mj (1 − Ti j + Ti j s j )

⎤
⎦,

where g(x) is the PGF of the degree distribution of an arbitrary 429

vertex in the configuration model given by 430

g(x) :=
∞∑

k=0

pkxk .
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For notational convenience, we combine the PGFs of all types431

into a single vectorized PGF γ := {γi}M
i=1.432

However, if v is a later-generation infective, then the433

number of its children follows the excess degree distribution.434

Hence, the PGF of the number of secondary infections of each435

type is given by436

�i(s1, . . . , sM ) := G

⎡
⎣ M∑

j=1

mj (1 − Ti j + Ti j s j )

⎤
⎦,

where G(x) is the PGF of the excess degree distribution with437

the form of438

G(x) :=
∞∑

k=0

kpk

〈k〉 xk−1.

We also define the vectorized PGF � := {�i}M
i=1.439

With these PGFs in hand, we can compute the probability440

of extinction. Formally, for 1 � i � M and a positive integer441

n, let P(n)
i denote the probability that the epidemic dies out442

by generation n (that is, distance n from the infection source),443

where the initial infective is of type i. Classical results from444

branching process theory [[58], Chap. V.1] imply that445 (
P(n)

1 , . . . , P(n)
M

) = (γ ◦ � ◦ . . . ◦ �︸ ︷︷ ︸
n − 1 times

)(0, . . . , 0).

The probabilities of extinction can be found by taking the446

limit n → ∞. Formally, define �(n) to be the n-fold compo-447

sition of �. Assuming there is a well-defined limit as n → ∞,448

�(n)(0, . . . , 0) → (Q1, . . . , QM ) which is the unique vector449

satisfying450

�(Q1, . . . , QM ) = (Q1, . . . , QM ).

The probabilities of eventual extinction are therefore given by451

(P1, . . . , PM ) = γ (Q1, . . . , QM ). (3)

Since the above describes the extinction event when the initial452

infective is type i, the PE is 1 − Pi.453

To formally justify taking the limit n → ∞, we need to454

check that the multitype branching process with PGF � is pos-455

itive regular and nonsingular [58,59]. The process is singular456

if and only if each type has exactly one secondary infection.457

Our model is clearly nonsingular since each neighbor of an458

infective is independently infected. A sufficient condition for459

our process to be positive regular is if there is a positive proba-460

bility that a type-i individual can infect a type- j individual, for461

any 1 � i, j � M. This is indeed the case if we assume that462

mi > 0 and Ti j > 0 for all 1 � i, j � M. Both assumptions463

are expected to hold in practice as the former condition states464

that there is a positive fraction of the population wearing each465

type of mask, and the latter states that there is a positive466

probability of transmission between any two neighboring in-467

dividuals.468

B. Epidemic threshold469

In the special case where M = 1 (e.g., when no one wears470

a mask), it is well known that there exists a phase transition471

in the PE based on the basic reproduction number, R0, de-472

fined as the mean number of secondary infections in a naive473

population. Put differently, R0 is the expected number of new 474

infections generated by a newly infected node in a population 475

where all individuals are susceptible. It is known that if R0 476

is greater than one then the PE is positive, i.e., epidemics 477

can take place. When R0 � 1, however, the PE is zero [63] 478

meaning that there is zero chance for a spreading process to 479

reach a positive fraction of the population. Beyond marking 480

a phase transition, the metric R0 measures, in a sense, the 481

speed at which the epidemic grows and is often used by pol- 482

icymakers when deciding on mitigation strategies. Thus, it is 483

of significant importance to characterize R0 for the multitype 484

mask model. 485

First, notice from the computations in Sec. III A [in par- 486

ticular, from Eq. (3)] that the PE is zero (P1 = . . . = PM = 1) 487

if and only if Q1 = . . . = QM = 1. Hence, we focus on the 488

phase transition for extinction/emergence of the multitype 489

branching process with PGF �. Let A ∈ RM×M be a nonneg- 490

ative matrix such that Ai j is the expected number of type- j 491

children [74] of a type-i later-generation infective. Define 492

R0 := ρ(A) to be the spectral radius of A, and recall that the 493

multitype branching process with PGF � is positive regular 494

and nonsingular [see the discussion at the end of Sec. (III A)]. 495

It is a well-known property of multitype branching processes 496

that if R0 > 1 we have Pi < 1 for all 1 � i � M, while if R0 � 497

1 we have Pi = 0 for all 1 � i � M; e.g., see Refs. [58,59]. 498

We proceed by computing the entries of A to illustrate the 499

dependence of R0 on the graph topology, the mask param- 500

eters and the viral transmissibilities. To this end, note that 501

Ai j is equal to the expected number of type- j children of a 502

later-generation infective times Ti j . The expected number of 503

children (computed over all types) is given by 504

G′(1) =
∞∑

k=1

k(k − 1)pk

〈k〉 = 〈k2〉 − 〈k〉
〈k〉 ,

where 〈k〉 and 〈k2〉 are the first and second moments of the 505

degree distribution, respectively. Since the probability that a 506

given child is type- j is mj , we have 507

Ai j =
( 〈k2〉 − 〈k〉

〈k〉
)

Ti jm j .

This leads to the matrix representation 508

A = 〈k2〉 − 〈k〉
〈k〉 Tm,

where the (i, j)th entry of the matrix T is Ti j and m is a 509

diagonal matrix with (i, i)th entry being mi. Putting everything 510

together, we have 511

R0 = 〈k2〉 − 〈k〉
〈k〉 ρ(Tm). (4)

We next study a simpler version of Eq. (4) in a special case 512

of interest. Typically, masks are characterized in terms of their 513

inward and outward efficiencies (see, e.g., Ref. [60]). The 514

inward efficiency is the probability that respiratory droplets 515

will pass from the outside layer of the mask to the inside; thus, 516

inward efficiency quantifies the protection of the mask against 517

receiving the virus. The outward efficiency is the probability 518

that respiratory droplets will pass from the inside layer of 519

the mask to the outside, quantifying the protection against 520
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transmitting the virus. The transmission probability from a521

type-i individual to a type- j individual is then given by522

Ti j := (1 − εout,i )(1 − εin, j )T,

where εout,i is the outward efficiency of a type-i mask, εin, j is523

the inward efficiency of a type- j mask, and T is the baseline524

transmissibility of the virus, i.e., the probability of transmis-525

sion in the presence of no masks. For notational convenience,526

let εout be the M-dimensional vector where the ith entry is527

εout,i; similarly define the vector εin. Then, using Eq. (4), we528

have529

R0 =
( 〈k2〉 − 〈k〉

〈k〉
)

T ρ[(1 − εout)(1 − εin )�m].

Since (1 − εout)(1 − εin)�m is a rank one matrix, it has only530

one nonzero eigenvalue which is given by531

(1 − εin)�m(1 − εout) =
M∑

i=1

mi(1 − εin,i )(1 − εout,i ).

This allows us to conclude that532

R0 =
( 〈k2〉 − 〈k〉

〈k〉
)

T
M∑

i=1

mi(1 − εin,i )(1 − εout,i ). (5)

It is worth noticing that the simplifications that yield to533

Eq. (5) do not apply to all heterogeneous bond percola-534

tion models with arbitrary transmissibility matrix T. In other535

words, the basic reproduction number R0 might depend on536

cross terms Ti j for an arbitrary transmissibility matrix T. In537

the specific case studied in this work, the transmissibility538

matrix T is given by the inward and outward efficiency pa-539

rameters of the M mask types, and the basic transmissibility540

parameter T . This leads all rows of T being linearly dependent541

on each other, e.g., the ith row can be found by multiplying542

the jth row by (1 − εout,i )/(1 − εout, j ). Put differently, the543

transmissibility matrix T resulting from different mask types544

is rank-1. It is this special property that allows the simplifica-545

tions to Eq. (5). However, Eq. (5) disentangles three different546

factors that contribute to the spreading processes: Network547

structure ( 〈k2〉−〈k〉
〈k〉 ), viral transmissibility T and average mask548

filtration power
∑M

i=1 mi(1 − εin,i )(1 − εout,i ). We point out549

that (1 − εin,i )(1 − εout,i ) is a property for each type of masks,550

which also echoes how we evaluate the average mask filtration551

power in Sec. IV C.552

In Fig. 2, we present the boundary of T -mno-mask plane553

[Fig. 2(a)] and mmask-ε plane [Fig. 2(b)] that identify the554

epidemic threshold R0 = 1 using Eq. (5). Here we assume555

two types of nodes: Mask and no mask. mmask is the fraction556

of mask-wearers and mno-mask = 1 − mmask is the fraction of557

no-mask nodes. For simplicity of the presentation, we further558

set ε = εout = εin ∈ [0, 1] for the mask. In Fig. 2(a), for each559

ε, the curves separate the areas where epidemics can take560

place (north-east of the curves) from the areas where they561

can not (south-west of the curves). It is observed that with the562

same T , increasing ε increases the maximum mno-mask that is563

allowed in the population. Figure 2(a) presents the boundary564

of mmask − ε plane separating R0 = 1. Similarly, in Fig. 2(b)565

for each T , the curves separate the areas where epidemics566

can take place (north-east of the curves) from the areas where567

(a) T - mno-mask epidemic boundary

(b) mmask - epidemic boundary

FIG. 2. (a) Epidemic boundary that separates the region of the
parameter plane that results in R0 � 1 (i.e., epidemics are not possi-
ble) from the region that gives R0 > 1 (i.e., epidemics are possible).
(a) Epidemic boundary shown on the parameter plane defined by
the viral transmissibility T and the maximum fraction of no-mask
wearers mno-mask for different values of ε; and (b) epidemic boundary
shown on the parameter plane defined by the fraction of mask-
wearers mmask and mask efficiency parameter ε for different values
of T . In panels (a) and (b), we assume two types of nodes: Nodes
wearing masks with the same inward and outward efficiencies ε

and nodes wearing no masks. Mean degree = 10 for panel (a), and
mean degree = 4.5 for panel (b). The north and east of each curve
specify the region for which epidemics are possible, while the south
and west parts of each curve stand for the region where epidemics
can not occur.

they can not (south-west of the curves). We can see that with 568

the same mmask, increasing T increases the minimum ε that is 569

needed to prevent epidemics. 570

C. Expected epidemic size 571

In this section, we compute the expected size of the 572

epidemic—that is, the final fraction of infected individuals 573

of each type, conditioned on the event that the epidemic 574

does not die out in finite time. Our method follows 575

Refs. [53,65,72,73,75]. 576

The analysis proceeds as follows. Let v be a vertex selected 577

uniformly at random, and recall that the local structure of the 578

graph around v is a tree with probability tending to 1 as the 579
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network size tends to infinity. The number of children of the580

root, v, follows the distribution {pk}k�0 and the number of581

children of a later-generation vertex follows the excess degree582

distribution. We say that the root node is at level 0, and more583

generally, we say that the vertices with distance � from the584

root are at level �. The epidemic is initialized by specifying585

the infection status of vertices far away from v. Formally, we586

specify a large positive integer n as well as θ := {θi}M
i=1, which587

is a collection of values between 0 and 1. For each type-i ver-588

tex in level n, we assume it is infected with probability 1 − θi,589

and that it is not infected with probability θi. Given this initial590

configuration, we denote for 1 � i � M and 0 � � � n − 1591

the quantity q(n)
�,i to be the probability that a type-i vertex in592

level � is not infected, given the initial configuration θ at level593

n. The probability q(n)
�,i can be computed in a recursive manner,594

which we describe next.595

Let u be a given vertex of type i in level �, so that q(n)
�,i is the596

probability that u is not infected by a vertex in level � + 1. As597

in Sec. III A, let k1, . . . , kM denote the number of neighbors598

of each type in level � + 1 and let X1, . . . , XM denote the599

number of infected neighbors of each type. Conditioned on600

X1, . . . , XM , the probability that u is not infected is601

M∏
j=1

(1 − T ji )
Xj .

We next take an expectation over the Xj’s to compute the602

unconditional probability of noninfection. To this end, ob-603

serve that the infection status of nodes in the same level are604

independent from each other since vertices in a given level605

do not have common infected descendants due to the treelike606

structure of the network. Hence, since there are k j neighbors607

of type j, we have608

Xj ∼ Binomial
(
k j, 1 − q(n)

�+1, j

)
.

Moreover, the Xj’s are independent. The probability of u not609

being infected conditioned on k1, . . . , kM is therefore given by610

E

⎡
⎣ M∏

j=1

(1 − T ji )
Xj | k1, . . . , kM

⎤
⎦

=
M∏

j=1

[
q(n)

�+1, j + (
1 − q(n)

�+1, j

)
(1 − T ji )

]k j

=
M∏

j=1

(
1 − T ji + q(n)

�+1, jT ji
)k j

. (6)

Note that Eq. (6) is quite similar to the PGF derived in Eq. (2),611

with Ti j replaced with Tji and s j replaced with q(n)
�+1, j . Follow-612

ing the same steps as in Sec. III A, we therefore arrive at the613

following recursion for � � 1:614

q(n)
�,i = G

⎡
⎣ M∑

j=1

mj
(
1 − T ji + T jiq

(n)
�+1, j

)⎤⎦ =: Fi
(
q(n)

�+1

)
. (7)

For the case � = 1, we have 615

q(n)
0,i = g

⎡
⎣ M∑

j=1

mj
(
1 − T ji + T jiq

(n)
1, j

)⎤⎦ =: fi
(
q(n)

1

)
. (8)

Above, q(n)
� := {q(n)

�,i } is the vectorized collection of the level � 616

probabilities. For notational convenience, we also write F := 617

{Fi}M
i=1 and f := { fi}M

i=1. The recursions (7) and (8) imply that 618

q(n)
1 = F(n−1)(θ).

Conditioned on the event that the epidemic emerges, we may 619

assume that θi < 1 for all 1 � i � M; that is, there is a positive 620

probability that any given vertex in level n is infected. Taking 621

the limit as n → ∞ shows that q1 := limn→∞ q(n)
1 satisfies the 622

fixed-point equation 623

q1 = F(q1). (9)

The limiting probability that the root is not infected is then 624

given by 625

q0 = f (q1).

Since q0 specifies the asymptotic probabilities of noninfec- 626

tion, 1 − q0,i is the probability that a uniform random type-i 627

vertex is eventually infected. This is the same as the expected 628

fraction of infected type-i vertices once the epidemic has 629

run its course. Note the convergence to the fixed point q1 630

is guaranteed. Moreover, ES and PE share the same phase 631

transition point defined by R0 = 1. More discussion on the 632

convergence guarantee and phase transition can be found in 633

Appendix Sec. A 2. 634

IV. NUMERICAL RESULTS 635

We next present extensive numerical simulations that val- 636

idate our theoretical analysis. In all experiments presented in 637

this section, the contact network was generated via the config- 638

uration model with Poisson degree distribution and 1 000 000 639

vertices. Additional experiments on networks with degree dis- 640

tribution following power law with exponential cutoff appear 641

in Appendix Sec. A 3 b. To generate the plots, we took an 642

average over 5000 independent trials where, in each trial, a 643

new contact network was generated. We adopt 0.05 as the 644

threshold of epidemic emergence. 645

This section is organized as follows: Sec. IV A presents 646

how the key epidemiological quantities are impacted by mean 647

degrees. More results with varying baseline viral transmissi- 648

bilities can be found in Appendix Sec. A 3 a. Section IV B 649

explores the effect of masks with different qualities and the 650

implications for mask-wearing strategies given limited good 651

quality masks. Section IV C provides one of the most critical 652

findings of this paper: PE and ES are not always behaving 653

the same way. Source control is more important before the 654

epidemic happens, while self-protection is essential if the 655

epidemic already exists. Sensitivity analysis on different types 656

of network structures is shown in Appendix Sec. A 4. Sec- 657

tion IV D provides a deeper look into the case where the mask 658

type allocation depends on the degrees of the nodes, revealing 659

the different roles nodes with different degrees play in the 660

spreading processes. 661
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A. Spreading process as a function of mean degree662

In this experiment, we assume there are three types of663

nodes in the population: Surgical mask wearers (type 1), cloth664

mask wearers (type 2), and people who do not wear any665

masks (type 3). The vector m = [m1, m2, m3] represents the666

proportions of the population for the three types of nodes.667

The inward efficiencies of the masks are represented by the668

vector εin = [εin,1, εin,2, εin,3], while the outward efficiencies669

are given by εout = [εout,1, εout,2, εout,3]. For our first exper-670

iment, we set m = [0.3, 0.6, 0.1], εout = [0.8, 0.5, 0], and671

εin = [0.7, 0.5, 0] based on the work [28]. In this parame-672

ter setting, surgical masks have better inward and outward673

efficiencies than homemade cloth masks. According to re-674

cent work on the estimation of transmission probability of675

SARS-CoV-2 [76], the maximum probability is 63.2% at the676

source reduces exponentially to less than 1% over a distance677

of 1.5 m. We adopt T = 0.6 in our work as the baseline678

transmissibility.679

Figure 3 studies the probability of emergence and the final680

epidemic size conditioned on emergence with varying mean681

degrees from 1 to 10. All figures show a perfect match be-682

tween the theoretical results and simulation results. The R0683

values for mean degree = 6 and 7 are 0.921 and 1.105, respec-684

tively. Figure 3(a) compares the PE when the initial spreader is685

wearing a surgical mask, a cloth mask, no mask, and random686

(any of the three types). We observe that different types of687

initiators influence PE differently. In particular, the PE is688

lowest when the initiator wears surgical masks which have689

better inward and outward efficiencies than cloth masks. On690

the contrary, the probability is highest when the initiator does691

not wear a mask. This is expected since mask-wearing reduces692

the initial transmissibility of the virus from the initiator to the693

later propagation.694

Figure 3(b) depicts the final fraction of the infected popula-695

tion conditioned on epidemic emergence. The total epidemic696

size is the summation of the three types of infection sizes (no697

mask, cloth mask, and surgical mask). As the mean degree698

increases, i.e., when the average number of contacts of peo-699

ple in the network increases, the ES tends to increase. This700

demonstrates the effectiveness of mitigation strategies such701

as social distancing in reducing the total size of the infected702

population during a pandemic.703

Figure 3(c) presents the individual infection probability,704

i.e., the epidemic size of a type divided by the percentage705

of the same type in the population. The difference between706

epidemic size and individual infected probability is that the707

former indicates the fraction of people who are infected and708

of a certain type, and the latter shows the fraction of infected709

people within a certain type. The epidemic size provides us710

insights from a global perspective that how the infected pop-711

ulation distributes over all types of masks, while individual712

infection probability gives us a view into each individual713

type of node. It is shown that no-mask wearers suffer from714

the largest probability of infection, followed by cloth masks715

and surgical mask wearers. No-mask wearers also have the716

highest increasing rate as the mean degree of the contact717

network increases. This trend also conforms with the trend718

of the probability of emergence shown in Fig. 3(a). These719

results demonstrate the increased risks of infection for people720

wearing an inferior mask, or no mask at all.721

(a) Probability of Emergence

(b) Epidemic Size (Given Emergence)

(c) Individual Infection Probability

FIG. 3. Probability of the emergence (a), epidemic size (given
emergence) (b), and individual infection probability (c) for three
mask types: Surgical (green), cloth (blue), and no mask (yellow) on
synthetic networks generated by the configuration model with Pois-
son degree distribution on a varying mean. m = [0.3, 0.6, 0.1], T =
0.6, εout = [0.8, 0.5, 0], and εin = [0.7, 0.5, 0]. Simulation results
show perfect agreement with our theoretical results with 1 000 000
nodes and 5000 experiments.

B. Comparing the effectiveness of mask types 722

We now leverage our results to examine the effect of masks 723

with different qualities. For example, an interesting question 724

to ask is: What should be the mask-wearing strategies to 725

mitigate the epidemic most efficiently? 726

We follow the inward and outward probabilities of sur- 727

gical masks and homemade cloth masks suggested by [28]: 728
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εout = [0.8, 0.5] and εin = [0.7, 0.5]. We set T = 0.6 as it is729

in Sec. IV A. Under this setting, surgical masks have bet-730

ter inward and outward efficiencies than cloth masks, which731

clearly separate the good and bad masks. In the later section,732

we will discuss the individual impact of inward and outward733

efficiencies in more detail. Assume that there are only two734

types of nodes in the population: Cloth mask wearers and735

surgical mask wearers. The proportion of surgical and cloth736

masks are given by msurgical and mcloth, respectively, where737

we have msurgical + mcloth = 1. Figure 4 illustrates the effect738

of changing the proportion of surgical masks from 0.1 to 0.9739

under contact networks with four different mean degrees: 8,740

10, 15, and 20.741

When the fraction of surgical mask wearers increases, the742

probability of an epidemic with a random seed and the total743

epidemic size are decreasing monotonically in all four cases.744

In Fig. 4(a) (where the mean degree of the contact network is745

8), we see that it suffices to have 30% of the population wear-746

ing the surgical mask to make the probability of emergence747

drop nearly to zero; i.e., to ensure that the spreading event is748

unlikely to turn into an epidemic. In Figs. 4(b)–4(d), we see749

that the percentage of the population wearing surgical masks750

needs to be at least 50%, 80%, and 90%, respectively, to751

make the probability of epidemics nearly zero, when the mean752

degree increases to 10, 15, and 20, respectively. This shows753

the tradeoff between people having more contacts on average754

and the percentage of surgical mask wearers in preventing755

the epidemic. In particular, we conclude that when people756

are interacting with more contacts on average, significantly757

more people need to wear high-quality masks to prevent the758

spreading process from turning into an epidemic.759

These plots also show nonmonotonic trends in the epidemic760

size among surgical mask wearers when the mean degree is761

10, 15, and 20. This is due to the tradeoff between the growth762

of msurgical and the drop in the epidemic size. The right-most763

column of Fig. 4 decouples this competition. As msurgical in-764

creases, the individual infection probability of each mask type765

decreases monotonically. The probability of emergence (the766

leftmost column) shares a similar tendency with individual767

infection probability. Regardless of the virus spreading phase,768

i.e., either before or after the epidemic emerges, given various769

qualities of masks, our result demonstrates that it is recom-770

mended for the entire population to wear the best quality771

masks as much as possible to reach the most efficient virus772

mitigation.773

Next, we explore the impact of a fraction of the population774

not wearing any mask in our results. In Fig. 5, we assume775

that x% of the population does not wear any masks, while the776

rest wear either surgical or cloth masks. In this case, εout =777

[0.8, 0.5, 0], and εin = [0.7, 0.5, 0] for surgical, cloth and no778

mask. In other words, we set m = [msurgical, mcloth, mno mask],779

where mno mask = x/100, mcloth + mno mask = 1 − x/100. We780

fix the network’s mean degree to 10 and generate the theo-781

retical prediction and simulation results for the probability of782

emergence and epidemic size with x = 10, 20, and 40. We783

also plot “individual infection probability” in the rightmost784

column in Fig. 5, which is defined as the epidemic size of a785

given type of nodes (conditionally on the emergence of the786

epidemic) divided by the proportion of that node type. Put787

differently, individual infection probability quantifies the odds788

that an individual will eventually be infected based on their 789

mask-wearing behavior. 790

When x = 10, i.e., if 10% of the population does not wear 791

any masks, then, as we see from Fig. 5(a), even when 80% 792

of the people wear surgical masks, the epidemics still occur 793

with positive probability; contrast this with Fig. 4(b) where it 794

was sufficient for 50% of the people to wear surgical masks 795

to have PE equals zero. This means that if there are 10% of 796

no-mask-wearers in the population, epidemics can still occur 797

despite the rest of the population wearing surgical masks. 798

Additionally, when x increases from 10 to 40, the slope of 799

the decreasing trend for the probability of emergence and in- 800

dividual infection probability becomes less steep on average. 801

This phenomenon implies that the larger the percentage of 802

no-mask-wearers in the population, the harder for good masks 803

to alleviate the virus spreading. 804

Both observations suggest that regardless of mask quality, 805

mask-wearing should be treated as a universal requirement for 806

the entire population for efficient epidemic prevention. 807

C. Tradeoff between inward and outward mask efficiency 808

This section explores the tradeoff between inward and out- 809

ward efficiencies of the masks in use, and presents one of the 810

most critical findings on the phases of the spreading processes. 811

In particular, inward efficiency refers to the probability of a 812

mask blocking the pathogen from coming inside the mask, 813

while the outward efficiency refers to the probability of a 814

mask stopping the pathogen from being emitted to the outside 815

world through the mask [65]. As discussed before, filtration 816

material and seal of masks could cause divergence of the 817

two efficiencies [28]. Reference [60] thoroughly evaluated the 818

inward and outward efficiency of 10 types of masks and a 819

face shield under different particle size conditions. When the 820

particle size is around 1 to 2 µm, the inward efficiency for a 821

surgical mask is 25% to 30% while the outward efficiency is 822

50% to 75%. For masks made of microfiber, when the particle 823

size is of range 2 to 5 µm, the inward efficiency (50% to 824

75%) is constantly higher than the outward efficiency (20% 825

to 50%). Besides, a total sealed face shield will have very 826

low and similar inward and outward efficiency (both around 827

10%) when the particle size is 0.5 µm. However, the outward 828

efficiency exceeds the inward efficiency as the particle size 829

increases: The outward efficiency reaches 75%, and inward 830

efficiency sticks around 25% when the particle size grows to 831

5 µm. 832

In this work, we use vectors εin and εout to represent the 833

inward and outward efficiencies for all types of masks. When 834

the inward efficiency of a mask is better than its outward 835

efficiency, we call them inward-good masks. Similarly, we call 836

masks with higher outward efficiency as outward-good masks. 837

Inward-good masks are more effective for self-protection 838

when the subject is immersed in the environment of virus 839

particles than blocking the virus emitted from the infected 840

person’s respiratory system. Similarly, outward-good masks 841

are better at source control than the protection of the wearer. 842

One practical question to ask is: If the government is provided 843

with both inward-good and outward-good masks, what should 844

be the purchasing strategy? Should the government buy all 845
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(a) Mean Degree = 8

(b) Mean Degree = 10

(c) Mean Degree = 15

(d) Mean Degree = 20

FIG. 4. Probability of emergence, epidemic size (given emergence), and individual infection Probability with an increasing proportion of
surgical mask wearers (msurgical) in the population under four mean degrees (a) 8, (b) 10, (c) 15, (d) 20 of the contact networks. εout = [0.8, 0.5],
and εin = [0.7, 0.5] for surgical and cloth mask. T = 0.6. Individual infection probability is calculated as the epidemic size of each type of
mask divided by the corresponding proportion. Results show that increasing the proportion of surgical mask wearers can effectively compress
the virus spreading. In the meanwhile, the increase in the mean degree brings down the virus-compression effect of the same proportion of
surgical masks. The simulation is done with 1 000 000 nodes and 5000 experiments.
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(a) x = 10

(b) x = 20

(c) x = 40

FIG. 5. Probability of emergence, epidemic size (given emergence), and individual infection probability with an increasing proportion
of surgical mask wearers (msurgical) in the population under a fixed mean degree = 10, for different percentages of no-mask population x:
(a) x = 10, (b) x = 20, (c) x = 40. εout = [0.8, 0.5, 0], and εin = [0.7, 0.5, 0] for surgical, cloth and no mask. T = 0.6. Compared (a) with
Fig. 4(b), when x = 10, the proportion of surgical mask-wearers needs to increase from 50% to 80% to prevent the emergence. When x > 10
(b, c, d), it is not possible to prevent the emergence. In addition, the slope of the individual infection probability becomes zero as x increases.
The simulation is done with 1 000 000 nodes and 5000 experiments.

inward-good masks or outward-good masks? Or, should a846

more complicated strategy be adopted?847

Assume that there are three types of masks among the848

population: Inward-good mask wearers, outward-good mask849

wearers, and people who do not wear masks, represented as850

type-1, type-2, and type-3 nodes, respectively. We have the 851

proportion vector of three types as m = [m1, m2, m3] where 852

m1 + m2 + m3 = 1. To study the impact of mask assignment 853

strategy for inward-good and outward-good masks, each time 854

we fix the proportion of no-mask-wearers at x%, and vary 855
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the proportion of outward-good-mask-wearers m2 from 0.1 to856

1-x/100. Based on the work by [60], the specific efficiency857

parameters of the masks are selected as εout = [0.7, 0.3, 0]858

and εin = [0.3, 0.7, 0]. T = 0.6 as it is in Sec. IV A. Here we859

would like to comment on the value selection for the efficiency860

parameters εout and εin further. To form a fair comparison861

between inward-good and outward-good masks, ideally, both862

types are supposed to have the same average viral droplet863

transmission filtration power, considering both inward protec-864

tion and outward protection. In other words, one type should865

not be strictly better than the other type. Equation (5) provides866

a direct measure of each mask’s average filtration power in867

terms of the expected number of new infections in a popu-868

lation where all individuals are susceptible, given the mask’s869

inward and outward efficiencies. Thus the parameter choice870

for the inward-good mask and outward-good mask should fol-871

low that (1 − εout,o)(1 − εin,o) = (1 − εout,i )(1 − εin,i ), where872

εout,o and εin,o (εout,i and εin,i, respectively) represent the873

outward and inward efficiencies for the outward-good mask874

(inward-good mask, respectively).875

Figure 6 shows the results of the probability of emergence,876

the epidemic size given emergence, and individual infection877

probability when the mean degree is 10, x =10, 20, and 40.878

An interesting result is that different strategies work best at879

different stages of the virus propagation process. Unlike all the880

previous figures, where both probabilities with random seed881

and total epidemic size given emergence show a decreasing882

trend when msurgical increases, Fig. 6 displays an opposite trend883

between the probability of emergence and epidemic size: The884

probability of emergence from a random seed is reducing885

monotonically while the total epidemic size is increasing, as886

the proportion of the outward-good mask wearers m2 grows.887

Put differently, outward-good masks are more helpful in ter-888

minating the spreading process before the emergence of the889

pandemic, whereas inward-good masks are essential to con-890

trol the infection size when the pandemic already exists.891

To check the generalizability of our conclusion on the892

tradeoff between outward-good and inward-good masks, we893

conduct sensitivity analysis on the network structures in Ap-894

pendix Sec. A 4. We modified the network structure provided895

by the configuration model in four different experiment set-896

tings: (i) increase the network’s mean degree to provide a897

less skewed degree distribution and higher connectivity; (ii)898

directly remove the network structure by replacing the config-899

uration model with a fully connected network; (iii) replace the900

original configuration model with configuration model with901

clustering [61] to approximate social networks with higher902

clustering coefficient; (iv) replace the random graph model903

with a real-world dataset for studying disease spreading. The904

results show that even with various modifications on the905

network structures, our conclusion on the tradeoff between906

the inward and outward efficiencies remains the same. This907

demonstrates that the configuration model provides a mathe-908

matical tractable, intuitive, and generalizable starting point to909

model contact networks for studying disease-spreading pro-910

cesses.911

We believe that this result has implications that go beyond912

the impact of masks and can be applied to other pandemic913

mitigation strategies, including prioritization of vaccines,914

social distancing measures, and other nonpharmaceutical915

interventions. Generally, it is seen that at the early stages 916

of the virus spreading, i.e., when the infection fraction has 917

not reached a significant percentage, a source-control-oriented 918

strategy is crucial to prevent the epidemic from emerging. 919

However, if an epidemic has already emerged and a significant 920

fraction of the population has already been infected, then it be- 921

comes most effective to implement a self-protection-oriented 922

strategy to reduce the final fraction of the infected population. 923

It is thus of utmost importance to develop pandemic mitiga- 924

tion strategies with the two distinct stages in mind, with each 925

stage potentially having a different optimum strategy. 926

D. Degree-based selection of inward-good 927

and outward-good masks 928

In the previous discussion, we have allocated different 929

types of masks to the population randomly, i.e., without any 930

dependence on their degrees, etc. In this section, we seek to 931

understand whether giving high-degree nodes (e.g., people in 932

cities) and low-degree nodes (e.g., people in villages) differ- 933

ent types of masks would be more effective in reducing the 934

probability and size of the epidemics compared to randomly 935

allocating the masks. 936

In particular, we assume that x% of the nodes in the pop- 937

ulation are wearing outward-good masks while the rest are 938

wearing inward-good masks. With nodes ranked according to 939

their degrees from highest to lowest, we consider two different 940

mask allocation strategies as follows. Strategy 1: Top x% of 941

the nodes (with the highest degree) wearing outward-good 942

masks; and strategy 2: Bottom x% of the nodes (with the 943

lowest degree) wearing outward-good masks. For comparison 944

with the previous discussion, we also consider the case where 945

the x% of the nodes wearing outward-good masks are selected 946

uniformly at random from the entire set of nodes. Then, we 947

obtain results for the probability of emergence and expected 948

epidemic size as x varies from 0 to 100. 949

The results are presented in Fig. 7 where we see once 950

again an intricate difference between the pre-epidemic and 951

post-epidemic stages of the spreading process. As seen in 952

Fig. 7(a), compared to randomly allocating, it is better to 953

assign outward-good masks to low-degree nodes to reduce the 954

probability of epidemics. Probability reduces by around 0.06 955

when x = 60 for low-degree selection (yellow curve, strategy 956

2). However, when the goal is the reduce the total fraction 957

of infected nodes given that an epidemic took place, we see 958

from Fig. 7(b) that it is instead better to allocate outward- 959

good masks to high-degree nodes. Epidemic size reduces by 960

0.06 when x = 30 for high-degree selection (green curve, 961

strategy 1). A possible explanation for this difference is as 962

follows. If our mask allocation strategy (say, Strategy 1) gives 963

outward-good masks to high-degree nodes (and inward-good 964

masks to low-degree nodes), then the probability of transmis- 965

sion from an infected node to a susceptible node will be the 966

smallest from a high-degree node to a low-degree degree but 967

will be the largest from a low-degree node to a high-degree 968

degree node. The situation will be exactly the opposite if we 969

use Strategy 2 which gives outward-good masks to low-degree 970

nodes; i.e., the chances of transmission will be the smallest 971

from a low-degree node to a high-degree degree node and 972

largest from a high-degree node to a low-degree degree node. 973
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(a) x = 10

(b) x = 20

(c) x = 40

FIG. 6. Probability of emergence, epidemic size (given emergence), and individual infection probability with an increasing proportion of
outward-good mask wearers in the population under a fixed mean degree = 10, for different percentages of no-mask population x: (a) x = 10,
(b) x = 20, (c) x = 40. εout = [0.7, 0.3, 0] and εin = [0.3, 0.7, 0] for inward-good, outward-good, and no mask. T = 0.6. As moutward-good

increases, the probability of emergence with random seed (red) is decreasing whereas the total epidemic size given emergence (red) is
increasing. This shows the two different stages these two metrics represent, where outward-good masks are less helpful before the emergence
than after it. The simulation is done with 1 000 000 nodes and 5,000 experiments.

For reducing the probability of epidemics, we need to consider974

the early stages of the spreading process, particularly the very975

beginning of it. Since the seed node is selected uniformly at976

random, its degree will follow the network’s degree distribu-977

tion. We can expect that when the seed node has a high degree,978

the chances of it infecting one or more of its neighbors and979

eventually leading to an epidemic is significant irrespective of 980

the type of mask they are wearing. If, however, the seed node 981

has a low degree, then there is hope that the spreading process 982

will end early without leading to an epidemic. With this intu- 983

ition, it can be seen that reducing the transmission probability 984

from low-degree nodes to high-degree nodes would be most 985
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(a) Probability of Emergence with degree selection

(b) Epidemic Size with degree selection

FIG. 7. Probability of emergence (a) and epidemic size (given
emergence) (b) with degree selection of outward-good masks. Sup-
pose only two mask types exist in the population: Outward-good
and inward-good. Three outward-good masks allocation schemes are
considered: Randomly allocate x percent of nodes in the popula-
tion to wear outward-good masks (red); allocate top x percent of
high-degree nodes with outward-good masks (green); Allocate top
x percent of low-degree nodes with outward-good masks (yellow).
x is the ratio of outward-good masks. εout = [0.7, 0.3], and εin =
[0.3, 0.7] for inward-good and outward-good masks. T = 0.6 and
mean degree = 10. Simulation results were obtained with 1 000 000
nodes and 5000 experiments.

effective in reducing the probability of epidemics, which is986

achieved by Strategy 2 (i.e., by giving outward-good masks987

to low-degree nodes). Put differently, giving outward-good988

masks to high-degree nodes (which is the case for Strategy989

1) leads to a situation where an infected low-degree node990

has a high chance of transmitting the virus to a high-degree991

susceptible node, increasing the probability of a single node992

initiating a spreading process that leads to an epidemic. This993

intuition is confirmed in Fig. 7(a), where we see that Strategy994

1 leads to a higher probability of epidemics than the case995

where masks are allocated randomly without any dependence996

on node degrees.997

For reducing the expected size of an epidemic that has al-998

ready taken place, we can explain the results seen in Fig. 7(b)999

similarly. In this post-epidemic stage of the spreading process,1000

there is already a critical mass of infected individuals, and we1001

can expect to have little chance of preventing a high-degree1002

node from being infected irrespective of the mask type they1003

are wearing; e.g., out of the many of their neighbors, several1004

would be expected to be infected in the post-epidemic stage,1005

and at least one would be likely to infect this node irrespective1006

of the corresponding mask types. Thus, the only hope for 1007

reducing the epidemic size would be to protect low-degree 1008

nodes from being infected by high-degree virus-spreaders. As 1009

previously mentioned, the probability of transmission from 1010

a high-degree node to a low-degree node is the smallest in 1011

Strategy 1, where outward-good masks are allocated to high- 1012

degree nodes. 1013

Summarizing, we see that at the early stages of the spread- 1014

ing process, it is critical to protect high-degree nodes from 1015

infection, while after the epidemic already forms, protecting 1016

other nodes from infected high-degree nodes helps more in 1017

suppressing the extension of the virus. This result echoes 1018

our previous findings that mitigation strategies for spreading 1019

processes should be treated with two different stages in mind 1020

by focusing on source-control before the epidemic starts and 1021

self-protection after the epidemic forms. 1022

V. CONCLUSION 1023

In this paper, we have studied an agent-based model for 1024

the viral spread on networks called the multitype mask model 1025

in which agents wear masks of various types, leading to 1026

heterogenous probabilities of receiving and transmitting the 1027

virus. In particular, we performed a theoretical analysis of 1028

three critical quantities: The probability of emergence (PE), 1029

the epidemic threshold (R0), and the expected epidemic size 1030

(ES), and we validated our theoretical results by comparing 1031

them against simulations and found a near-perfect match be- 1032

tween them. 1033

We then applied the model to investigate the impact of 1034

mask-wearing in realistic settings related to the control of 1035

viral spread. First, we studied the effect of allocating superior 1036

and inferior masks (e.g., surgical and cloth masks) within the 1037

population and found, naturally, that a greater prevalence of 1038

surgical masks significantly reduces PE and ES. Interestingly, 1039

we also found that when there is a significant fraction of 1040

non-mask-wearers, increasing the fraction of superior masks 1041

among mask-wearers does not significantly reduce the proba- 1042

bility of emergence or expected epidemic size. This highlights 1043

the importance of wearing some mask—even a potentially 1044

low-quality one—in mitigating the spread of a virus. 1045

Next, we examined the tradeoffs between masks that 1046

are good at preventing viral transmission from an infected 1047

neighbor (inward-good masks) and masks that are good 1048

at preventing viral transmission to susceptible neighbors 1049

(outward-good masks). Strikingly, we find that the two types 1050

of masks are good for controlling different epidemiological 1051

quantities. Specifically, outward-good masks reduce PE, mak- 1052

ing them ideal for controlling the early stage spread of the 1053

virus. However, inward-good masks reduce the ES, and hence 1054

they are most effective in mitigating the impact of an already- 1055

large pandemic. This distinction justifies the importance of 1056

source control during the early propagation stage and self- 1057

protection when a relatively large percentage of the population 1058

is infected. 1059

We further investigated mask assignment based on node 1060

degree. In the analysis described above, mask assignment 1061

was assumed to be independent of node degree. We further 1062

analyzed the situation in which masks are selected for nodes 1063

based on their degrees. We found that assigning high-degree 1064
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nodes with inward-good masks and low-degree nodes with1065

outward-good masks can more effectively reduce the proba-1066

bility of emergence than the opposite or random allocation1067

schemes. In contrast, for epidemic size, high-degree nodes1068

wearing outward-good masks and low-degree nodes wearing1069

inward-good masks are more helpful in suppressing the exten-1070

sion of the epidemic. The finding provides insights into how1071

to allocate inward-good and outward-good masks to crowded1072

areas and less populated regions in different stages of viral1073

spread. Interestingly, the results also highlight the distinct and1074

changing roles that high-degree and low-degree nodes play.1075

Before the epidemic forms, low-degree node source control is1076

critical in preventing the epidemic from happening, by which1077

we can remove the additional paths for a single seed to initiate1078

the epidemic. After the epidemic already exists, high-degree1079

nodes are more impactful on the extension of the epidemic1080

size. In this case, giving high-degree nodes outward-good1081

masks and self-protection of low-degree nodes become essen-1082

tial.1083

Finally, we remark that there are several avenues for fu-1084

ture research. There are several ways to augment the model,1085

for instance, by considering networks with community struc-1086

ture, multitype networks, and the effect of multiple strains1087

of the virus propagating. It is also of great interest to ex-1088

plore network structure with undefined moments, such as pure1089

power-law distributions with heavy tails.1090
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APPENDIX1103

1. Preliminaries for Analytical Solutions1104

a. Generating functions1105

The PGF of the degree distribution of an arbitrary vertex in1106

the configuration model is given by1107

g(x) :=
∞∑

k=0

pkxk,

where pk is the probability that a given vertex has degree1108

k. It is also interesting to study the degree distribution of a1109

node identified by following a randomly chosen edge, e.g., to1110

characterize the distribution of the number of additional infec-1111

tions that a newly infected node might lead to. Specifically, let1112

excess degree be defined as the “degree minus one” of a node1113

reached by following one end of an edge selected uniformly1114

at random. The PGF of the excess degree is given by 1115

G(x) :=
∞∑

k=0

kpk

〈k〉 xk−1,

where 〈k〉 := ∑∞
k=0 kpk is the mean degree of a node. For 1116

details on the derivation, see [[75], Chapter 13]. 1117

b. Local structure of the configuration model 1118

Graphs generated according to the configuration model 1119

are known to be locally treelike in the following sense: The 1120

local neighborhood of a uniform random vertex converges in 1121

distribution to a random tree as the number of vertices tends 1122

to infinity [[75], Chapter 12.4]. The number of children of the 1123

root is sampled from the degree distribution, and the number 1124

of children of a later-generation vertex is sampled from the 1125

excess degree distribution. 1126

2. Convergence and phase transition for ES 1127

We make a few technical remarks about the computation 1128

of q1 in Eq. (9). Taking the limit n → ∞ is a well-defined 1129

operation since the multitype branching process correspond- 1130

ing to the PGF F is positive regular and nonsingular under 1131

the assumption that mi > 0 and Ti j > 0 for all 1 � i, j � M 1132

(for more details, see the discussion at the end of Sec. III A). 1133

The convergence to the fixed point q1 is guaranteed as long 1134

as the initial condition θ has positive entries [[58], Theorem 1135

V.2]. Conditioned on the event where the epidemic emerges, 1136

this can be safely assumed. 1137

Just as in the PE, there is a phase transition between an ES 1138

of zero (q0 = 1) and a positive ES (q0,i < 1 for all 1 � i � 1139

M). Noting that the formulas for F and � are identical, except 1140

that Ti j is replaced with Tji, the threshold for the ES is 1141

( 〈k2〉 − 〈k〉
〈k〉

)
ρ(T�m). (A1)

When Eq. (A1) is less than or equal to 1, q1 = q0 = 1. 1142

However, when Eq. (A1) is greater than 1, q0,i < 1 for all 1143

1 � i � M. 1144

It can be seen that Eq. (A1) is exactly equal to the expres- 1145

sion for R0 defined in Eq. (4). 1146

We show this by proving T�m and Tm have the same 1147

spectrum, which in turn implies that ρ(T�m) = ρ(Tm). This 1148

can be seen through the stronger property that the character- 1149

istic polynomials of the two matrices are identical. Note that 1150

for any square matrix A, A and A� have the same spectrum, 1151

thus the spectrum of T�m is equal to the spectrum of m�T. 1152

Besides, m is diagonal, so we have m�T = mT. Thus we 1153

have ρ(T�m) = ρ(Tm). The result follows from the fact that 1154

for two square matrices A and B, AB and BA have the same 1155

spectrum. 1156

Putting together the results of this section and Sec. III B, we 1157

have shown that when R0 � 1, the epidemic dies out in finite 1158

time, whereas when R0 > 1, the epidemic eventually infects a 1159

positive fraction of the population. 1160
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(a) Probability

(b) Epidemic Size (Given Emergence)

(c) Individual Infection Probability

FIG. 8. Probability of emergence (a), epidemic size (given emer-
gence) (b), and individual infection probability (c) as a function
of the transmissibility of the virus (T ). Degree distribution fol-
lows Poisson (5). m = [0.3, 0.6, 0.1]. εout = [0.8, 0.5, 0] and εin =
[0.7, 0.5, 0] for surgical, cloth, and no mask. The simulation is done
with 1 000 000 nodes and 5000 experiments.

3. Additional validation on analytical results1161

a. Spreading process as a function of viral transmissibility1162

In Fig. 8, we investigate the effect of the baseline1163

transmissibility (i.e., the transmissibility between two non-1164

mask-wearers) on the probability of emergence and expected1165

epidemic size. This is useful in understanding the increased 1166

risk of infection based on mask-wearing behavior in cases 1167

where high-transmissibility variants of the virus may emerge 1168

over time, e.g., the Delta variant for COVID-19. In Fig. 8, 1169

we use the same parameter setting as in Fig. 3 except that 1170

the mean degree is set to 5 and T varies from 0.1 to 0.9. 1171

As T rises, the probability of emergence, epidemic size, and 1172

individual probability are all seen to increase monotonically. 1173

Moreover, similar to Fig. 3, as the original transmissibility T 1174

increases, no-mask wearers experience the highest individual 1175

infection probability as well as the highest rate of increased 1176

risk with respect to increasing baseline transmissibility. 1177

b. Validation of results when the degree distribution 1178

is power law with exponential cutoff 1179

Our analytical results for all three epidemic quantities are 1180

valid when the degree distribution is well-behaved, i.e., when 1181

all of its moments are finite. Put differently, our results are 1182

not restricted to networks with Poisson degree distribution. 1183

To gain more insight into the consequences of the analytical 1184

results for real-world networks, we now consider a specific 1185

example of spreading processes when the contact network 1186

has power-law degree distributions with exponential cutoff. 1187

Specifically, we let 1188

pk =
{

0 if k = 0,

[Liγ (e−1/� )]−1k−γ e−k/� if k = 1, 2, . . . ,

where γ and � are positive constants and the normalizing 1189

constant Lim(z) is the mth polylogarithm of z; i.e., Lim(z) = 1190∑∞
k=1

zk

km . 1191

We choose power-law distributions with exponential cutoff 1192

here because they are applied to a wide range of real-world 1193

networks [63,77], and they are well-behaved, i.e., have finite 1194

moments. Figure 9 demonstrates that our theoretical results 1195

match simulations well for networks for γ = 2.5 and � = 1196

10, where these two parameter values are selected in line 1197

with [64]. 1198

4. Sensitivity analysis on network structure 1199

In Sec. IV C, we discussed the tradeoff between inward- 1200

good and outward-good masks: Different strategies should be 1201

considered at different stages of the virus spreading process. 1202

Figure 6 presents the opposite trends between the probability 1203

of emergence with random seed and total epidemic size: As 1204

the percentage of outward-good masks increases, the proba- 1205

bility of emergence decreases but the epidemic size increases. 1206

Outward-good masks are useful for preventing the epidemic 1207

from happening, while inward-good masks are helpful in con- 1208

trolling the infection size if the epidemic already exists. In 1209

this section, we conduct sensitivity analysis to explore further 1210

the impact of the network structure on the trends exhibited 1211

by Fig. 6. The analysis aims at demonstrating the robustness 1212

of our conclusion on the tradeoff between outward-good and 1213

inward-good masks. Four experiment settings are considered: 1214

(i) repeating experiments of Fig. 6 with simple modifica- 1215

tions as follows: Increase the mean degree of the Poisson 1216

degree distribution from 10 to 30 and decrease the original 1217

virus transmissibility T from 0.6 to 0.2; (ii) replacing the 1218
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(a) Probability

(b) Epidemic Size (Given Emergence)

(c) Individual Infection Probability

FIG. 9. (a) Probability of emergence, (b) epidemic size (given
emergence), and (c) individual infection probability as a function of
the transmissibility T of the virus. The underlying degree distribution
is generated through power law with exponential cutoff where the
power exponent equals 2.5 and the cutoff equals 10. The param-
eter choices are as follows: Mean degree = 1.028, m = [0.1, 0.9],
εout = [0.4, 0], and εin = [0.2, 0] for cloth and no mask, respectively.
The network consists of 1 000 000 nodes and we show the average
results over 5000 experiments. We see that our analytical results still
show a near-perfect match with simulation results when the degree
distribution is power law with exponential cutoff.

network generated by the configuration model with a small1219

fully connected network with the number of nodes 1001 and1220

mean degree 1000 and adjusting T from 0.6 to 0.006; (iii)1221

replacing the original configuration model with configuration1222

model with clustering proposed by Newman in Ref. [61];1223

(iv) replacing the generated random graph with Haslemere1224

dataset, a real-world public dataset on human social contacts 1225

collected specially for modeling infectious disease dynamics 1226

[78]. We name the above four settings from experiment setting 1227

1 to experiment setting 4, respectively. Experiment setting 1 1228

increases the connectivity of the network generated by the 1229

configuration model, providing a less skewed and more even 1230

degree distribution. Experiment setting 2 removes the topo- 1231

logical structure explicitly by using a small fully connected 1232

network instead of the network generated by the configura- 1233

tion model. We set the network size to 1000 in experiment 1234

setting 2 due to the computation complexity of fully con- 1235

nected networks. Experiment setting 3 increases the clustering 1236

coefficient of the generated random graph to approximate real- 1237

world social networks. This model generalizes the standard 1238

configuration model, which specifies the number of edges 1239

connected to each vertex. Instead, in configuration model with 1240

clustering, both the number of single edges and the number 1241

of triangles are specified. It incorporates clustering in a sim- 1242

ple, sensible fashion. Experiment setting 4 uses a real-world 1243

contact network for epidemic simulation, a part of the BBC 1244

documentary “Contagion! The BBC Four Pandemic” [78,79]. 1245

The data is high-resolution, collected from residents of the 1246

town of Haslemere, where the first evidence of UK-acquired 1247

infection with COVID-19 was reported in late February 2020 1248

[80]. We call this dataset the Haslemere dataset in this paper. 1249

In experiment 1 and 2 settings, we adjust T to avoid the 1250

situation where the probability of emergence reaches 1 regard- 1251

less of the percentage of outward-good masks by keeping the 1252

product of T and mean degree as a constant. 1253

Figure 10 shows the result for experiment setting 1: The 1254

probability of emergence, the epidemic size given emergence, 1255

and the expected fraction of infection, for the inward-good 1256

mask, outward-good mask, and no mask. The percentage of 1257

the population who wears no mask, x, is set to 10, 20, 40 from 1258

Figs. 10(a) to 10(c). The efficiency parameters are set the same 1259

as it is in Fig. 6: εin = [0.7, 0.3, 1], and εout = [0.3, 0.7, 1]. 1260

The mean degree is 30, and transmissibility T = 0.2. We can 1261

see that Figs. 6 and 10 result in the same trends: The probabil- 1262

ity of emergence with random seed decreases, and the total 1263

epidemic size increases as the percentage of outward-good 1264

masks increases. Moreover, all three quantities: The proba- 1265

bility of epidemics, epidemic size, and individual infection 1266

probability in Fig. 10 are close to their counterparts in Fig. 6. 1267

There is no significant difference between the results shown in 1268

both figures. This is understandable because even though we 1269

alter the underlying network structure by tripling the number 1270

of paths on average for the virus to spread, we reduce the 1271

transmissibility at the same time. This supports the fact that 1272

the spreading process is a function of multiple factors. Our 1273

result incorporates the tradeoff among those factors and thus 1274

displays robustness under various conditions. 1275

Figure 11 presents the simulation results of experiment set- 1276

ting 2. The contact network is a fully connected network with 1277

a node size of 1001 and a mean degree of 1000. Original virus 1278

transmissibility T is 0.006. Other parameter settings are the 1279

same as experiment setting 1. Figure 11 shows that the trend 1280

that the probability of emergence with random seed decreases 1281

and the total epidemic size increases as the percentage of 1282

outward-good mask wearers increases still holds. This again 1283

shows that, even though the result is derived under certain 1284
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(a) x = 10

(b) x = 20

(c) x = 40

FIG. 10. Probability of emergence, epidemic size (given emergence), and individual infection probability with an increasing proportion of
outward-good mask wearers in the population under a fixed mean degree = 30, for different percentages of no-mask population x: (a) x = 10,
(b) x = 20, (c) x = 40. εout = [0.7, 0.3, 0] and εin = [0.3, 0.7, 0] for inward-good, outward-good, and no mask. T = 0.2. Results resemble
Fig. 6 after tripling the mean degree and reducing T . The conclusion on the tradeoff between inward and outward efficiency still holds. The
simulation is done with 1 000 000 nodes and 5000 experiments.

assumptions of network structures, however, our conclusion1285

is generalizable. In Fig. 11, one observation is noticeable: The1286

probability of emergence for outward-good, inward-good, and1287

no mask wearers overlap. This is potentially due to the fact1288

that all the nodes have the same degree. Based on the ob-1289

servations from Sec. IV D, high-degree and low-degree nodes1290

play different roles in the two phases of virus spreading. Be-1291

fore the epidemic happens, it is critical to protect low-degree 1292

nodes by assigning them inward-good masks to reduce extra 1293

pathways for high-degree nodes to get infected. However, if 1294

everyone in the network has the same degree and connects 1295

to everyone else, then the increase of outward-good masks 1296

becomes important to all the nodes in the network. As for 1297

epidemic size, the results for all three types of users are not 1298
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(a) x = 10

(b) x = 20

(c) x = 40

FIG. 11. Probability of emergence, epidemic size (given emergence), and individual infection probability with an increasing proportion
of outward-good mask wearers (moutward-good) in the population under a fixed mean degree = 1000, for different percentages of no-mask
population x: (a) x = 10, (b) x = 20, (c) x = 40. εout = [0.7, 0.3, 0] and εin = [0.3, 0.7, 0] for inward-good, outward-good, and no mask. T
= 0.006. The trend that as moutward-good increases, the probability of emergence with random seed decreases and total epidemic size increases
remains robust. This supports the conclusion that we should focus on source control before epidemics and self-protection if an epidemic
happens. The simulation is done with 1 000 000 nodes and 5000 experiments.

overlapping in Fig. 11. They resemble the trends in Figs. 61299

and 10. This is because, at this stage of the spreading process,1300

most nodes are infected, whether all the nodes are of the1301

same degree or the network exhibits a wide range of degree1302

distribution.1303

At this stage, the more inward-good masks (less outward- 1304

good masks) are assigned, the better self-protection capacity 1305

the population gains. This is also observed from the consis- 1306

tently decreasing trends of individual infection probability 1307

from Figs. 6, 10, and 11. Due to the complicated interplay 1308
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(a) Probability of Emergence (b) Epidemic Size

FIG. 12. Probability of emergence (a) and epidemic size (given emergence) (b) with an increasing proportion of outward-good mask
wearers (moutward-good) in the population under a mean degree = 5 (s = 1 and t = 2) using networks generated by configuration model with
clustering. The percentage of the no-mask population x = 40. εout = [0.7, 0.3, 0] and εin = [0.3, 0.7, 0] for inward-good, outward-good, and
no mask. T = 0.6. The simulation is done with 1 000 000 nodes and 5000 experiments. The average clustering coefficient of the networks is
0.247 (compared to 0.004 for Fig. 6). The trend that as moutward-good increases, the probability of emergence with random seed decreases and
total epidemic size increases still holds even with a higher clustering coefficient.

of various factors such as network structure, mask allocation,1309

and virus spreading dynamics, it comes as no surprise that1310

the removal of the network structure features does influence1311

the results in some sense. For example, we no longer see the1312

discrepancy in the probability of emergence for three types of1313

agents; the exact values and slope of the curves are not the1314

same, etc. Nevertheless, we observe that under most condi-1315

tions, source control is critical before the epidemic happens,1316

and self-protection is more helpful if the epidemic already1317

exists remains.1318

Figure 12 shows the results for experiment setting 3. In1319

this experiment, instead of using the original configuration1320

model to generate the random graphs, we use the generalized1321

configuration model with clustering [61,81]. In this general- 1322

ized model, for a node i, it is required to specify separately 1323

si, the number of single edges (“stubs”) and ti, the number 1324

of complete triangles (“corners of triangles”) attached to it. 1325

The joint degree sequence {si, ti} describes the numbers of 1326

such stubs and corners for every vertex. Given the degree 1327

sequence, we can generate the network by selecting pairs of 1328

stubs uniformly at random and choosing trios of corners at 1329

random to form complete triangles. Similar to the constraint 1330

on the degree sequence for the original configuration model 1331

(the degree sequence has to have an even sum), the sum of 1332

the edge degree sequence {si} has to be even, and the sum 1333

of the triangle degree sequence {ti} has to be divisible by 1334

(a) Probability of Emergence (b) Epidemic Size

FIG. 13. Probability of emergence (a) and epidemic size (given emergence) (b) with an increasing proportion of outward-good mask
wearers (moutward-good) using Haslemere dataset. The percentage of the no-mask population x = 40. εout = [0.7, 0.3, 0], and εin = [0.3, 0.7, 0]
for inward-good, outward-good and no mask. T = 0.6. There are 469 nodes and 8277 edges in the network, with a mean degree of 35.29. The
simulation is done with 5000 experiments. The clustering coefficient of the Haslemere contact network is 0.248 (compared to 0.004 for Fig. 6).
The trend that as moutward-good increases, the probability of emergence with random seed decreases and total epidemic size increases still holds
with a higher clustering coefficient on a real-world contact network.
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3 for the generalized configuration model. Given the joint1335

degree sequence {si, ti}, let’s say on average, each vertex is1336

connected to s single edges and t triangles, the mean degree1337

of a vertex is k = s + 2t . In this experiment, we generate {si}1338

based on Poisson distribution with a mean of 1, and {ti} based1339

on Poisson distribution with a mean of 2. The resulting net-1340

work thus has a mean degree of 5. We generated the network1341

with 1 000 000 nodes 5000 times, with an average clustering1342

coefficient of 0.247. Note that in Fig. 6, the average clustering1343

coefficient is 0.004 for 1 000 000 nodes over 5000 trials. In1344

Figs. 12(a) and 12(b), we still observe the opposite trend for1345

probability of emergence and epidemic size as the percentage1346

of outward-good masks increases.1347

Figure 13 presents the simulation results on the real-world1348

dataset described by experiment setting 4 [78]. The original1349

dataset is composed of pairwise distances between users in1350

the BBC Pandemic Haslemere app over time in the town of1351

Haslemere in UK. The network is undirected, where the edge 1352

represents an encounter within 50 min between two users. For 1353

simulating disease spread using Mask model, we binarize the 1354

edges to 1 and 0. The processed network consists of 469 nodes 1355

and 8277 edges, with a mean degree of 35.29, and a clustering 1356

coefficient of 0.248. The clustering coefficient here is close 1357

to that in experiment setting 3. We adopt the same parameter 1358

choice as experiment setting 3 except for the network struc- 1359

ture. In Figs. 13(a) and 13(b), the probability of emergence 1360

decreases as the percentage of outward-good masks increases, 1361

and in the meanwhile, epidemic size increases. This shows 1362

the similar trends we observe in experiment setting 1 to 3. 1363

Compared to Fig. 12(a), the values for probability of emer- 1364

gence in Fig. 13(a) are much higher than that in Fig. 12(a). 1365

But epidemic size for these two experiment settings are not 1366

too different. This could be due to a much larger mean degree 1367

and a small number of nodes Haslemere dataset has. 1368
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[55] A. Sridhar, O. Yağan, R. Eletreby, S. A. Levin, J. B. Plotkin,
and H. V. Poor, Leveraging a multiple-strain model with mu-
tations in analyzing the spread of Covid-19, in Proceedings
of the ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (IEEE,
Piscataway, NJ, 2021), pp. 8163–8167.

[56] D.-S. Lee and M. Zhu, Epidemic spreading in a social network
with facial masks wearing individuals, in Proceedings of the
IEEE Transactions on Computational Social Systems (IEEE,
Piscataway, NJ, 2021), Vol. 8, pp. 1393–1406.

004300-23

https://doi.org/10.4209/aaqr.2013.06.0201
https://doi.org/10.2217/fmb-2020-0292
https://doi.org/10.1016/j.idm.2020.04.001
https://doi.org/10.1016/S2589-7500(21)00003-0
https://doi.org/10.1377/hlthaff.2020.00818
https://doi.org/10.15585/mmwr.mm7007e1
https://doi.org/10.1021/acsestengg.1c00028
https://doi.org/10.1016/S1413-8670(11)70153-2
https://doi.org/10.1093/infdis/jiaa189
https://doi.org/10.1016/j.jvs.2020.07.040
https://doi.org/10.1063/5.0039487
https://doi.org/10.1063/5.0031996
https://doi.org/10.1016/S2589-7500(20)30293-4
https://doi.org/10.1063/5.0015044
https://doi.org/10.1038/s41598-021-92094-2
https://doi.org/10.3389/fpubh.2021.625499
https://www.alston.com/en/-/media/files/insights/publications/2020/04/fda-faqs-on-ppe-he2020_0689.pdf
https://doi.org/10.1038/s41467-020-17922-x
https://doi.org/10.1080/02786826.2021.1933377
https://doi.org/10.1371/journal.pone.0248099
https://doi.org/10.1016/j.jaerosci.2021.105905
https://doi.org/10.1097/IM9.0000000000000029
https://www.medrxiv.org/content/10.1101/2020.05.09.20096644v2
http://arxiv.org/abs/arXiv:2006.15626
https://doi.org/10.1371/journal.pone.0009018
http://arxiv.org/abs/arXiv:2004.13553
https://doi.org/10.1016/j.chaos.2020.110088
https://doi.org/10.1162/99608f92.a11bf693


YURUN TIAN et al. PHYSICAL REVIEW E 00, 004300 (2023)

[57] A. Catching, S. Capponi, M. T. Yeh, S. Bianco, and R. Andino,
Examining the interplay between face mask usage, asymp-
tomatic transmission, and social distancing on the spread of
Covid-19, Sci. Rep. 11, 15998 (2021).

[58] K. Athreya and P. Ney, Branching Processes, Grundlehren der
mathematischen Wissenschaften, Vol. 196 (Springer-Verlag,
Berlin, Heidelberg, 1972).

[59] D. J. A. Welsh, The Annals of Mathematical Statistics 36, 723
(1965).

[60] J. Pan, C. Harb, W. Leng, and L. C. Marr, Inward and outward
effectiveness of cloth masks, a surgical mask, and a face shield,
Aerosol Sci. Technol. 55, 718 (2021).

[61] M. E. J. Newman, Random Graphs with Clustering, Phys. Rev.
Lett. 103, 058701 (2009).

[62] F. Brauer and C. Castillo-Chavez, Mathematical Models in
Population Biology and Epidemiology, Texts in Applied Math-
ematics, Vol. 40 (Springer, Berlin, 2012).

[63] M. E. J. Newman, Spread of epidemic disease on networks,
Phys. Rev. E 66, 016128 (2002).
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